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Track-to-track fusion (T2TF) is very important in distributed
tracking systems. Compared to the centralized measurement fusion
(CMF), T2TF can be done at a lower rate and thus has potentially
lower communication requirements. In this paper we investigate the
optimal T2TF algorithms under linear Gaussian (LG) assumption,
which can operate at an arbitrary rate for various information con-
figurations. It is also assumed that the tracking system is synchro-
nized. Namely, all the trackers obtain measurements and do track
updates simultaneously and there are no communication delays be-
tween local trackers and the fusion center (FC). The algorithms
presented in this paper can be generalized to asynchronous scenar-
ios. First, the algorithms for T2TF without memory (T2TFwoM)
are presented for three information configurations: with no, partial
and full information feedback from the FC to the local trackers.
As one major contribution of this paper, the impact of information
feedback on fusion accuracy is investigated. It is shown that using
only the track estimates at the fusion time (T2TFwoM), informa-
tion feedback will have a negative impact on the fusion accuracy.
Then, the algorithms for T2TF with memory (T2TFwM), which are
optimal at an arbitrary rate, are derived for configurations with no,
partial and full information feedback. It is shown that, operating
at full rate, T2TFwM is equivalent to the CMF regardless of in-
formation feedback. However, at a reduced rate, a certain amount
of degradation in fusion accuracy is unavoidable. In contrast to
T2TFwoM, T2TFwM benefits from information feedback.

For nonlinear distributed tracking systems, an approximate
implementation of the T2TF algorithms is proposed. It requires
less communications between the FC and the local trackers, which
allows the algorithms to be implemented in distributed tracking
systems with low communication capacity. Simulation results show
that the proposed approximate implementation is consistent and has
practically no loss in fusion accuracy due to the approximation. For
the sensors-target geometry considered, it can meet the performance
bound of the CMF at the fusion times.

The problem of track-to-track association (T2TA) is also inves-
tigated. The sliding window test for T2TA, which uses track esti-
mates within a time window, is derived. It accounts exactly for the
crosscovariances among the track estimates and yields false alarm
rates that match the theoretical values. To evaluate the test power
when using more data frames, a comparison between the single time
association test and the sliding window test is performed. Counter-
intuitively, it is shown that the belief “the longer the window, the
greater the test power” is not always correct.
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1. INTRODUCTION

In a multisensor tracking system, the fusion center
(FC) is meant to gather and process information from
local sensors or trackers. There are generally two ap-
proaches for this purpose. One is the centralized mea-
surement fusion (CMF), in which the local measure-
ments are sent directly to the FC, where the central
tracker performs measurement to track association and
track update. The other approach is track-to-track fu-
sion (T2TF) in which local tracks are sent to the FC
where tracks of the same target are fused for improved
accuracy. In this paper, each track is assumed to be
generated by a Kalman filter, which is optimal under
linear Gaussian (LG) assumption and the same as the
linear minimum mean square error (LMMSE) estima-
tor for linear systems without the Gaussian assumption.
It is also assumed that the tracking system is synchro-
nized. Namely, all the trackers obtain measurements and
perform track updates simultaneously and there are no
communication delays between local trackers and the
FC. The T2TF algorithms presented in this paper can
be generalized to asynchronous cases which will be
discussed in [26]. Although the CMF approach pro-
duces the best results, it requires constant and reliable
communication links between local senors and the FC.
Lags in the communication links will result in out-of-
sequence measurements (OOSM), thus requiring spe-
cial algorithms [2]. If the communication links become
saturated because there are too many measurements to
transmit, the sensor network will lose information and
might fail. The T2TF approach is more attractive for
practical implementations. It allows the local trackers to
communicate with the FC once in a while, sending local
tracks for T2TF and possibly receiving as feedback the
fused tracks from the FC. The major benefit is that there
is no restriction on when and how often the local tracks
should be transmitted. This can reduce the requirements
on the capacity of the communication links.

For the problem of T2TF, the crosscorrelation among
tracks of the same target due to common process
noises was first observed in [1], where a formula for
the calculation of the crosscovariance was also pre-
sented. Based on the formula in [1], the algorithm
for the one-scan T2TF, i.e., T2TF without memory
(T2TFwoM) was studied in [5], which derived the al-
gorithm for T2TFwoM without information feedback
(T2TFwoMnf) at an arbitrary rate (see also [17, 18, 19,
20, 21, 22, 27]). Another type of T2TF algorithm—the
information matrix fusion (IMF)—was proposed in [13,
25]. Note that, unlike T2TFwoM, the IMF belongs to the
class of fuser with memory, since it uses track estimates
from the previous fusion. The IMF is equivalent to the
CMF when the fuser is operating at full rate [9, 13].
Comparisons between the IMF and the T2TFwoMnf
can be found in [8, 9], where it is shown that, oper-
ating at full rate, the T2TFwoMnf is not as accurate as
the IMF, and it was concluded that the suboptimality of
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T2TFwoMnf is because it is optimal only in ML sense.!

However, the IMF is not optimal when the fuser is op-
erating at reduced rate and, as reported in [10], it causes
inconsistency and even divergence. A simulation based
comparison on existing fusion algorithms can also be
found in [23].

In this paper, the T2TF algorithms that can operate at
an arbitrary rate are investigated for various information
configurations:

1. T2TFwoMnf (T2TFwoM with no information feed-
back)

2. T2TFwoMpf (T2TFwoM with partial information
feedback)

3. T2TFwoMff (T2TFwoM with full information feed-
back)

4. T2TFwMnf (T2TFwM with no information feed-
back)

5. T2TFwMpf (T2TFwM with partial information feed-
back)

6. T2TFwMff (T2TFwM with full information feed-
back)

Except for T2TFwoMnf presented in [5], the results
for all the other configurations are new. The impact of
information feedback and memory on the accuracy of
T2TF is thoroughly examined.

For T2TFwoM, depending on the existence of infor-
mation feedback, the three information configurations
[6, 15] are illustrated in Fig. 1. Suppose there are two
tracks (that pertain to the same target) which are fused at
certain times. The first configuration is the T2TFwoM
without information feedback (T2TFwoMnf) [3], des-
ignated as Type Ila configuration for multisensor track-
ing in [6]. As indicated in Fig. 1(a), the two local tracks
evolve independently without the information from each
other, thus the improved accuracies are achieved only
at the fusion times at the FC. The second configura-
tion is the T2TFwoM with partial information feedback
(T2TFwoMpf) which belongs to the Type IIb configu-
ration in [6]. In this case, as shown in Fig. 1(b), track 1
is fused with track 2 and continues with the fused track
(feedback) from the FC. However, track 2 does not re-
ceive the fused track in view of the partial information
feedback. The third configuration is the T2TFwoM with
full information feedback (T2TFwoMTff), which also be-
longs to the Type IIb configuration in [6]. As shown in
Fig. 1(c), both local trackers receive and continue with
the fused track.

As shown in this paper T2TFwoM has a degradation
in fusion accuracy compared to the CMF, and informa-
tion feedback has a negative impact on the fusion accu-
racy of T2TFwoM. However the degradation in fusion
accuracy of T2TwoM can be recovered by using also the
track estimates from the previous fusion. Accordingly,

IThe actual reason that T2TFwoMnf is (slightly) inferior to IMF op-
erating at full rate (when it is algebraically equivalent to CMF, see [6]
Section 8.6) is the lack of memory of T2TwoMnf. This is discussed
in detail in Section 2.4 and Section 3.4.

TRACK-TO-TRACK FUSION CONFIGURATIONS AND ASSOCIATION IN A SLIDING WINDOW
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Fig. 1. Information configurations for T2TFwoM (horizontal axis

is time). (a) T2TFwoM with no feedback. (b) T2TFwoM with partial
feedback (Fusion Center to Tracker 1). (¢) T2TFwoM with full
feedback (Fusion Center to Tracker 1 and Tracker 2).

the algorithms for T2TFwM are derived for configura-
tions with no, partial and full information feedback. It
is shown that, when operating at full rate, T2TFwM is
equivalent to the CMF (which is the global optimum) re-
gardless of information feedback. However, at reduced
rate, a certain amount of loss in fusion accuracy is un-
avoidable, and in contrast to the case of T2TFwoM,
information feedback improves the fusion accuracy of
T2TFwM. Furthermore, unlike the IMF, the T2TFwM
algorithms derived in this paper are optimal at any rate.

As pointed out in [8], the major difficulty for the
practical implementation of the optimal T2TF algorithm
is that it requires all the local filter gains and observation
matrices since the last fusion. In nonlinear distributed
tracking systems, the local information is not directly
available at the FC. In view of this, we propose an ap-
proximate implementation of the T2TF algorithms. It is
based on the idea of reconstructing local information
at the FC with minimum amount of information from
the local trackers, which has much less communication
requirements than the transmission of those local matri-
ces [12]. Simulation results show that this approximate
implementation is consistent and has practically no loss
in accuracy due to the approximation.

Studies on the problem of track-to-track association
(T2TA) can be found in [4, 24], in which the tests for
T2TA are made based on a single frame of data. In
[16], it is claimed that the test based on an average of
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TABLE I
List of Acronyms

configuration IV
special configuration IT™

configuration II
configuration II ;
configuration IIpf
configuration II
configuration 1™
configuration Hfﬁ
configuration Hll;/%

CMF Centralized Measurement Fusion
IMF Information Matrix Fusion
T2TF Track-to-Track Fusion
T2TFwoM Track-to-Track Fusion without memory
T2TFwoMnf T2TFwoM with no information feedback
T2TFwoMpft T2TFwoM with partial information feedback
T2TFwoMff T2TFwoM with full information feedback
T2TFwM Track-to-Track Fusion with memory
T2TFwMnf T2TFwM with no information feedback
T2TFwMpf T2TFwM with partial information feedback
T2TFwMIff T2TFwM with full information feedback

- : M
configuration II

the single time tests within a time window has improved
performance over the single time test. However, this
conclusion was drawn ignoring the state errors’ cross-
correlation in time [7]. In this paper the chi-square based
sliding window test for T2TA, which uses track estimates
within a time window, is derived. It accounts exactly for
all the crosscovariances among the track estimates and
yields false alarm rates that match the theoretical values.
To evaluate the test power when using more data frames
(longer window), a comparison between the single time
test and the sliding window test is performed. Coun-
terintuitively, it is shown that the belief “the longer the
window, the more the power” is not necessarily correct.
This is because the power of the test depends on both the
noncentrality parameter and the degrees of freedom of
the (chi-square) test statistic. When the multiple frames
of data selected for T2TA are strongly correlated, which
happens for motion with low process noises (because
the filter has “longer memory” in this case), the gain in
the noncentrality parameter by using more data frames
is too small to overcome the negative impact of the in-
creased degrees of freedom on the power of the test.
Thus, the sliding window test may be counterproductive
and has lower power than the single time test.

All the results presented are optimal under the LG
assumption.” The paper is organized as follows. Sec-
tion 2 discusses the algorithms for T2TFwoM with no,
partial and full information feedback. Section 3 derives
the algorithms for T2TFwM with no, partial and full
information feedback and shows the impact of informa-
tion feedback on T2TFwM. In Section 4, the approx-
imate implementation of the T2TF algorithms is pro-
posed and evaluated in a tracking scenario with a non-
linear measurement model. The problem of T2TA test is
investigated in Section 5, where the sliding window test
is derived and compared with the single time test. Sec-
tion 6 summarizes the paper with conclusions. For the
convenience of readers, Table I lists the acronyms used
in this paper and extends the configurations discussed
in [6].

2. TRACK-TO-TRACK FUSION WITHOUT MEMORY
(T2TFwoM) AT AN ARBITRARY RATE

2In the case of fusion the algorithms presented constitute the LMMSE
fuser, also called BLUE in, e.g., [18].

This section investigates the algorithms of
T2TFwoM (configuration II [6]) at an arbitrary rate.
Section 2.1 formulates the problem. In Section 2.2
the T2TFwoM algorithms are presented for informa-
tion configurations: with no, partial and full information
feedback. Section 2.3 presents the simulation results
that compare the fusion accuracies of T2TFwoMnf,
T2TFwoMpf, T2TFwoM{f and CMF. This leads to the
observation that, in T2TFwoM, information feedback
will cause a degradation of the fusion accuracy. This
phenomenon is further explained in Section 2.4.

2.1. Problem Formulation: T2TFwoM

Consider the basic scenario with two local track-
ers (designated as 1 and 2) at different locations. Each
tracker obtains measurements with its local sensor and
maintains local tracks of the targets. For the sake of
simplicity, it is assumed that the system operates in a
synchronous fashion, where all the trackers obtain mea-
surements and do local track updates simultaneously
with sampling interval 7. Communication links, which
have no delay in time, are available between the FC and
the local trackers. Each local tracker is allowed to com-
municate with the FC once in a while, sending its tracks
to the FC and possibly receiving the fused tracks (when
there is information feedback). At the FC, the fusion of
the tracks of a target from trackers 1 and 2 is formulated
as follows.? Let X, (k | k), P,(k | k) and X,(k | k), Py(k | k)
represent the two local tracks at the fusion time. As-
suming the crosscovariance of the two tracks P,,(k | k)
is available at the FC, T2TFwoM should be performed,
so that

EACIONACINI)
= f[3,(k | k), P (k | k), %, (k | k), Py(k | k), Py (K | )]
ey

where X, (k | k) and P.(k | k) represent the fused track. Af-
ter the fusion, the local tracks and their crosscovariance
should also be updated to Xi(k | k), P*(k | k), x5(k | k),

3 Association (see [6] Section 8.4) is assumed to have been already
performed.
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Py*(k | k) and P%(k | k) according to the information con-
figuration of the fusion (possible feedback from the FC).
Throughout the paper, superscript “«” is used to indi-
cate post-fusion tracks. Note that (1) implies that only
the local track estimates at the fusion time are used for
T2TFwoM, i.e., this is a fuser without memory of fused
and local track estimates from the previous fusion time.*

2.2. The Algorithms for T2TFwoM

If the local tracks x, (k | k), P, (k | k), X,(k | k), By(k | k)
and their crosscovariance Py,(k | k) are available at the
FC, the optimal® T2TFwoM can be done according to
Egs. (8.4.4-4)—(8.4.4-5) in [6], namely,

X (k [k) =X (k| k) + [P (k | k) = Py (k | k)]
IRk | K) + Bk [ K) — Py(k [ K) = PyyCk [ 1!
[k [ k) — Xy (k[ 5)]
=X,k | k) + K, () [x,(k | k) — X, (k | k)] 2)
F (k| k) =Pk |k)—[Rk|k) =Pk | k)]
[Pk [ k) + Pk | k) = Piy(k [ k) — Py (k [ )17
[Pk [ k) = Py (k| k)] (3)
where
P,(k | k) = Py (k | k) = Cov[x,(k | k),x,(k | k)]. (4)

To calculate P,(k | k), suppose the previous fusion was
performed at discretized time /, after which one has the
errors

XD =X [ —x0) &)
SUD =250 [ 1) —x(0) Q)

where x(/) denotes the true state of the target at /. Let

il | 1) = CovlFj(L | .5} | )] (7)
(| 1) = CovlF5( | 1).33( | 1)] ®)
Pyl | 1) = CovlF( | .35 | D). )

From Eq. (8.4.2-2) in [6], one has

x(+1|l+)=[I—-K(+ DH(+ DIF(Dx,( 1)
- -K,(+ DH((+ D]v{)
+K(+Dw(+1) s=1,2.
(10)

4A fuser with memory (of the previous track estimates) uses the track
estimates from the previous fusion time, which, as shown in Sec-
tion 3.4, improves fusion accuracy.

SMMSE if all the estimation errors are Gaussian and LMMSE other-
wise [7].

Using (10) recursively for both the cental and local
tracks from discrete time [ to k, it follows that

k
x(k | k) =Wk,Dx;(L| 1) + Z WY (k,i—1)v(i—1)

i=l+1

k
+ > Wk, Dw, (),

s=1,2 (11)
i=l+1
where the weights are defined as
k—i-1
Wetk) = [ U — Kk —iH,k — DIF(k—i — 1)
i=0
(12)

W (ki — 1)

Jj=0

k—i—1
=— { [T U~ Kk = pH Kk = DIF Gk~ j - 1)}

[ = K ()H ()] (13)

and

W, (k,i)

k—i—1
= { I U —K (k= pHk = pIFk—j - 1)}&@

=0
(14)

in which K (i), i=1+1,...,k are the Kalman filter
gains and H (i) are the observation matrices at local
tracker s and F(i — 1) are the state transition matrices.
Eq. (11) is the expression of the errors of the tracks
from Kalman filters as weighted sums of the previous
error at a certain point and the intervening process and
measurement noises. The significance of this expression
is that it shows explicitly all the sources of uncertainty
and provides the general tool for the derivations of the
T2TF and T2TA algorithms in the absence or presence
of memory and feedback.

From (11) and the whiteness assumption of the mea-
surement noises and the process noises, the crossco-
variance Py, (k | k), required by the T2TFwoM given in
(2)—(3), can be calculated as

P(k | k) = We(k, P | DWs (k. 1)

k
+ 37 Wtk — DOG — DWy (ki — 1)
i=l+1

15)

where Q(i) is the covariance of the process noises at
time i. Similarly to (11), the error of the fused track (2)
can be expressed as

X (k | k) = x,(k [ k) + K (K)[x,(k | k) — X, (k | k)]
= [I — K, (k))x (k [ k) + Ky, (k | K)Xy(k | k).
(16)
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After the fusion, local tracks 1 and 2 and their crossco-
variance should be updated according to the information
configuration.

In configuration T2TFwoMnf (see Fig. 1(a)), one
has

xj(k | k) = x,(k | k) 7)
Bk |k) =P (k| k) (18)
X5k | k) = x,(k | k) (19)
Py (k[ k) = Py(k | k) (20)
Pi(k | k) = Py(k | k) 2D
where P,,(k | k) is given in (15).
In configuration T2TFwoMpf (see Fig. 1(b))
xj(k | k) =x.(k | k) (22)
Pk | k) = Pk | k) (23)
5k | k) = x,(k | k) (24)
Pk [ k) = Py(k | k) (25)
and according to (16)
Pk [ k) = I =Ky (k)R (k | k) + Ky (k)P (k | k).
(26)
In configuration T2TFwoMI{f (see Fig. 1(c))
X5k [k) = xj(k [ k) = x.(k | k) 27
Pk |k)=P'(k|k)=P.(k|k) (28)
Pk | k) = Bk | k). (29)

The algorithm of T2TFwoM is summarized as fol-
lows:

e At the FC, the local tracks are fused according to
(2)-3).

e The fusion can be done exactly, if the following data
are available:

(i) The local tracks to be fused: x,(k | k), P,(k | k) and
&y (k| K), By(k | k)

(i) The covariances and crosscovariance from the
previous fusion at time I: P*(I|1), B'(l|1), P5(l]
l) (see (7)—(8))—needed for the calculation of the
current crosscovariance.

(iii)) The local weights (12)—(13).

e Depending on the information configuration, the local
tracks are updated accordingly using (17)—(21) for
T2TFwoMnf, or (22)—(26) for T2TFwoMpf, or (27)—
(29) for T2TFwoMIft.

The algorithm of T2TFwoM has no theoretical limit on
the number of the local trackers. Only the crosscovari-
ances among all the tracks of the same target need to be
properly calculated. See [11] for the n-sensors version
of the fusion equations (2)—(3). The use of the results
from [11] in the general case requires Eqgs. (11)—(13)
for each sensor.

TABLE II
Fuser Variances (at fusion times) in Steady State
(fusion interval: 5 s)

FC Track at Fusion Time

Fusion Type
Pos Vel
T2TFwoM{f 133 6.29
T2TFwoMpf 131 6.30
T2TFwoMnf 125 6.30
CMF 119 6.03

2.3. Comparison of the T2TFwoM Algorithms and the

CMF

The algorithms for T2TFwoM are evaluated first in
the following tracking scenario. The target state is de-
fined as [x x]’. The target motion is modeled as the
discrete white noise acceleration (DWNA) model in [7],
Section 6.3.2. It is assumed that two sensors obtain posi-
tion measurements of the target with a sampling interval
of T =1 s. The standard deviation of the measurement
noise is o,, =30 m and the process noise variance is
g =1 m?/s*. T2TFwoM takes place every 5 s, i.e., at a
reduced rate.

All the fusers are consistent in the simulations (their
covariance calculations are exact). In view of the consis-
tency, the performance comparison can be made using
the calculated covariances. Table II shows the steady
state variances of position and velocity at the FC. All
the fused tracks are more accurate than the single-sensor
(local) tracks without fusion, which have steady state
variances as 205 in position and 7.26 in velocity. Note
that at the fusion time the position estimates of all
the fused tracks have a small degradation compared to
the CMF: 5% for T2TFwoMnf, 10% for T2TFwoMpf,
12% for T2TFwoMI{f. This shows that T2TFwoM has
a degradation in fusion accuracy compared to the CMF
and the degradation increases in the presence of infor-
mation feedback. This apparently counterintuitive result
is further discussed in the next subsection.

2.4. The Impact of Information Feedback on
T2TFwoM

To show the impact of information feedback on
T2TFwoM, consider the following two-step scalar es-
timation problem. At time 0, two local estimators have
independent prior information: x; ~ N(x(0),P,) at esti-
mator 1 and x, ~ N(x(0),P,) at estimator 2. At time 1,
x(1) =x(0) + v, where the process noise v, ~ N(0,Q0).
The estimators have independent measurements of the
state: z; =x(1) +w; (w; ~N(O,R,)) at estimator 1 and
25 =x(1) + wy, (wy ~ N(O,R,)) at estimator 2. The errors
in the prior information, the process noise and the mea-
surement noises are all independent. For the sake of sim-
plicity itis assumed that b, =P, =R, =R, =1land Q =
1/2. Consider the fusion at time 1 and the fuser uses
only the track estimates at time 1, namely T2TFwoM.
Fig. 2 shows the information flow of the centralized
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Fig. 2. Information flow (CMF and T2TFwoM). (a) CMF
(configuration IV). (b) T2TFwoMI{f (configuration IIff).
(c) T2TFwoMnf (configuration IInf).

measurement fusion (CMF), T2TFwoM with full in-
formation feedback (T2TFwoMTff) and T2TFwoM with
no information feedback (T2TFwoMnf). Note that in
T2TFwoMT(f the information feedback (sharing) occurs
at time 0O in this example.

Using CMF (Configuration IV in Section 8.2.5 of
[6]), one has

ML D) = 3% + Iy + 4z + 42, (30)
with error (using the weighted sum form)
IME D = 4% + 15, — v + 3w+ 3w, (D)

where X, and x, denote the errors of X, and x,. It is easy
to calculate the covariance

Cov[xMF(1| D] = (32)
In T2TFwoMTff,® one has
A =3x + i+ 47+ 1o (33)

with error

X1 = ix] + %xzf %vl + %w] + %wz (34)

SNote that, following Section 8.2.3 of [6], Configuration IIb does not
have a memory of past estimates at the FC. It is T2TFwoM.

and B
Cov[xf(1|1]=2 (35)

In T2TFwoMnf (Configuration Ila in Section 8.2.3
[6]), it follows that

A D =1i% + 1+ 32+ 52 (36)
with error
A =45+ -2y + Sw + 3w, (37)
and
Cov[3"(1| )] = £. (38)

Then one has
Cov[x™F(1 | 1)] < Cov[x™(1 | 1)] < Cov[x(1 | 1)].

(39

There are losses in accuracy in T2TFwoMIff and
T2TFwoMnf compared to the CMF, although they are
relatively small, due to the large process noise in the
example. Comparing (31), (34) and (37), it can be
seen that the weights of the measurements are lower
in T2TFwoMnf than in the CMF. They become even
lower in T2TFwoMIff due to the information feedback,
which leads to the further loss in fusion accuracy.

3. THE ALGORITHMS FOR T2TFwM AT AN
ARBITRARY RATE

The results in Section 2.4 show that, at full rate,
T2TFwoM is less accurate than the CMF and informa-
tion feedback is detrimental to T2TFwoM. However, the
IMF is equivalent to the CMF when operating at full
rate [13]. In this case, T2TFwoM is inferior to the IMF.
This is because T2TFwoM uses only local estimates at
the fusion time, which contain most but not all of the
information for T2TF. In contrast, the IMF belongs to
the class of T2TFwM. However, at reduced rate, the
IMF algorithm is not optimal anymore.

To account for the information from the fused and
local track estimates from the previous fusion time,’ the
algorithm for T2TFwM at an arbitrary rate is derived
in the next three subsections for configurations with
no, partial and full information feedback, designated as
T2TFwMnf, T2TFwMpf and T2TFwMIf respectively.
Fig. 3 shows the information flow of the three configu-
rations.

3.1. The Algorithm for T2TFwMnf

As shown in Fig. 3(a), for T2TFwMnf, at fusion
time k, the track estimates to be fused are local track

7This implies one-step memory. In fact, there is no need for more,
since one-step memory summarizes, under the LG (or LMMSE) as-
sumptions, all the information from the previous track estimates. This
is confirmed by the simulation results in Section 3.4, which show that,
at full rate, T2TFwM (using one-step memory) yields the globally op-
timal fusion results.
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Fig. 3. Information flow: T2TFwM at an arbitrary rate. (a) T2TFwM with no information feedback (one cycle: from fusion time 1 to
the next fusion time k). (b) T2TFwM with partial information feedback (one cycle: from fusion time 1 to the next fusion time k).
(c) T2TFwM with full information feedback (one cycle: form fusion time 1 to the next fusion time k).

estimates X,(k | k), X,(k | k) and the predicted track es-
timates X, (k | 1), X,(k | I) and X.(k | [) from the previous
fusion, where subscript “c” indicates the (fused) track
at the FC. Stacking the estimates and the predicted es-
timates as a vector, one has

p=x,k k) x|k X(k|D) x| xk|D].
(40)

The fusion of these track estimates requires the covari-
ance of p, denoted as Cov(y). To obtain this covariance,
a slight modification of (11) gives

k
Xk | D) =Wk, DX [ D)+ Y Wy'k,i— (i — 1)
i=l+1
(41)
where s = 1,2,¢ and
k—I—1
Wik =[] Fe—i—1) (42)
i=0
k—i—1
Wy (ki—1) =~ ] Ftk—j—1D (43)
j=0

which are obtained by substituting the filter gains K (i)
in (12) and (13) by zero matrices, since the filter gains
are zero in the predicted track estimates. From (12),
(13), (42) and (43), Cov(y) can be easily calculated with
linear algebra.

For T2TFwMnf, define the following difference ma-
trix

1 0 -1 00
01 -1 00

M = (44)
00 -1 I 0
00 -1 0 I

where I denotes identity matrix of appropriate dimen-
sion, such that

Xk [ k) =X (k| D)
Xk [ k) =X (k| 1)
v=| R =Muypu. 45)
Xk [D—x.(k|1D)
Ryl | = 2.k | D

Using the standard MMSE estimator from [7], the fused
estimate is given by

%k | k) = X (k| 1) + Cov[x(k),v]Cov(v)'v (46)
where x(k) is the true state of the target at time k, and

Cov[x(k),v] = =[Cov(1)]3.,M’ 47)

Cov(v) = MCov(u)M'’ (48)

where [Cov(y1)]; ., denotes the ith row of matrix Cov(u).
In (46) x.(k | [) plays the role of the prior at the FC and
the other elements of x play the role of the observations.
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From (45)—(48), the fused estimate is
X (k| k)y=X,(k|D— [Cov(,u)](l:)M’(MCOV(,u)M’)’IM;L

=x.(k|D)+K,u (49)
where

K, = —[Cov(u)](3,:)M’(MCOV(;L)M’)’lM. (50)
The fused covariance is
P.(k | k) = P.(k | I) — Cov[x(k),]Cov(v)'Cov[x(k), ]
= B(k| D)= [Cov(10)) 3, M'(MCov(oM") "' M
[[Cov(1)] 3.,
= B(k| 1) + K, [[Cov()] (51)

For T2TFwMnf the crosscovariances between the fused
track and the tracks from trackers 1 and 2 can be
obtained from (49) as

P, (k| k) 2 Cov[x, (k| k).%,(k | k)]

= [Cov(w)] 1 3 + [Covi)] HK;  (52)
P (k | k) 2 Cov[x, (k| k).%.(k | K)]
= [Cov(i)] a3 + [COV(M)](z,:)K[L (33)

where [Cov(u)](i, h is element (7, j) of Cov(u).

Since there is no information feedback, both local
tracks are not changed after the fusion is performed at
the FC. One has

Xj(k | k) =X (k | k) (54)
Pk |k) = Pk | k) (55)
5k [ k) = xy(k [ k) (56)
Py (k| k) = Py(k | k) (57)
Pk [ k) = Pk | k) (58)
Pk | k) = P (k| k) (59)
P (k| k) = B.(k | k). (60)
3.2. The Algorithm for T2TFwMpf
Unlike T2TFwMnf, in T2TFwMpf, one has

x,(k | 1) =Xx,(k|1). Consequently, the elements X, (k |l)
in (40) should be removed. In this case, redefine yx in
(40) and M in (44) as

p=k 0 Gk|k) EKk|D GHk|DY (61)

and I 0 -1 0
M2lo 1 -1 0 (62)
00 —I I
It follows that
Bk |0 =R (k| D)
v= k| -3k D] =Mpu (63)

Xk | D) =X (k| D)

Then, similarly to T2TFwMnf, the fused estimate
x.(k | k) is obtained using (49) and the fused covariance
P.(k | k) follows from (51) using the modified definitions
(61) and (62).

After the fusion, the local tracks and the track cross-
covariances are updated as follows

xj(k | k) =x.(k|k) (feedback) (64)
P'(k|k)=PR.(k|k) (feedback) (65)
Pl(k|k)=P.(k|k) (feedback) (66)
x5(k | k) = X,(k | k) (no feedback) (67)
P'(k| k) =PR(k|k) (no feedback) (68)
Pk | k) = Py (k | K (69)
Lk | k) = B(k | k) (70)

where P,.(k | k) is given by (53) using the modified
definitions (61) and (62).

3.3. The Algorithm for T2TFwMff

In contrast to T2TFwMnf, in T2TFwMIf, one has
x,(k | 1) = xy(k | 1) = x.(k | ). Consequently, the elements
X,(k | I) and x,(k | ) in (40) should be removed. In this
case, redefine ;1 in (40) and M in (44) as

p=lklb) A&k ZkDI (7D
and
- [1 0 —I} (72)
= 0 I _I *
It follows that
. [’fl(k'k)_f”(k”)} = My (73)
Rk | k) =% Gk | D)

Then, similarly to T2TFwMnf, the fused estimate is
obtained using (49) and the fused covariance follows
from (51) using the modified definitions (71) and (72).

Due to full information feedback, the local tracks
and the track crosscovariances are updated as

Xk |k)=%.(k | k) (feedback) (74)
Pr(k| k) =P(k|k) (feedback) (75)
Pi(k| k) = Pk |k) (feedback) (76)
%3k | k) =%.(k | k) (feedback) (77)
Py(k | k)= Pyk|k) (feedback) (78)

Pk | k) = PGk | k) = P(k | k) (feedback). (79)

Note that in T2TFwMIff the crosscovariances be-
tween the fused track and the local tracks after the infor-
mation feedback are the same with the fused covariance
(51). This is different from the updated crosscovariances
in T2TFwMnf, i.e., (59) and (60).
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TABLE III
Fuser and Tracker 1 Calculated Variances at Fusion Times for Nf =1 (full rate), g=0.3, R, =R, =1

Time 1 2 3 4 5 6
T2TFwMnf Tracker 1 1.0000 0.5652 0.4639 0.4331 0.4230 0.4196
Fuser 0.5000 0.3077 0.2743 0.2673 0.2658 0.2654
T2TFwMpf Fuser 0.5000 0.3077 0.2743 0.2673 0.2658 0.2654
T2TFwMIt Fuser 0.5000 0.3077 0.2743 0.2673 0.2658 0.2654
CMF 0.5000 0.3077 0.2743 0.2673 0.2658 0.2654
TABLE IV

Fuser and Tracker 1 Calculated Variances at Fusion Times for Nf =3 (reduced rate), g =0.3, R, =R, = 1

Time 1 3 6 9 12 15
T2TFwMnf Trackerl 1.0000 0.4639 0.4196 0.4180 0.4179 0.4179
Fuser 0.5000 0.2772 0.2698 0.2694 0.2694 0.2694
T2TFwMpf Fuser 0.5000 0.2763 0.2690 0.2688 0.2688 0.2688
T2TFwMIt Fuser 0.5000 0.2755 0.2683 0.2682 0.2682 0.2682
CMF 0.5000 0.2743 0.2654 0.2653 0.2653 0.2653

3.4. Performance Comparison: T2TFwMnf vs.

T2TFwMff and CMF

To evaluate the performance of the optimal T2TF
with memory (T2TFwM) at an arbitrary rate, consider
the following tracking scenario. The state of the target
(taken as a scalar for simplicity) evolves according
to

x(k) =x(k—1) +v(k),

k=2,3,... (80)

where v(k) is the process noise with variance g.

There are two trackers, 1 and 2, taking measure-
ments of the target with measurement noises w; and
w,, namely,

z;(k) = x(k)y + wik), =12 (81)

where w;(k) are zero-mean Gaussian noises with vari-
ance R;. The two trackers calculate tracks of the tar-
get with their own measurements using a Kalman filter.
Each local track is initialized at time 1 with the first
local measurement. The first T2TF happens at time 1.
Then T2TFwM occurs every N, sampling times.

Table IIT shows the fuser- and tracker-calculated
variances of the errors of the track estimates when the
fuser is operating at full rate. It can be seen that, at full
rate, the fuser with memory (with no, partial and full
information feedback) is equivalent to the CMF.

Table IV shows the fuser- and tracker-calculated
variances when the fuser (with memory) is operating
at reduced rate. In this case, T2TFwM, with or without
information feedback, has a small loss in fusion accu-
racy compared to the CMF. This is because, in T2TF,
information from the common process noises and the
common prior information (due to information feed-
back) appears simultaneously in different local tracks,
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which causes their weights (and, consequently, also the
weights of the new measurements) in the fused track
to deviate from the global optimum. This is similar to
the T2TFwoM example discussed in Section 2.4. When
T2TFwM is done at full rate, these deviations are fully
corrected by fusing the previous track estimates (see [6],
Section 8.6). However, at a lower rate, the deviations can
not be fully corrected, thus, a certain amount of degra-
dation in fusion accuracy is unavoidable. Also note
that, in contrast to the case of T2TFwoM, T2TFwMIff
is more accurate than T2TFwMpf and T2TFwMnf,
namely information feedback improves fusion accuracy
in T2TFwM (as expected). While it is too involved to
provide a theoretical proof of this result, simulations in
different settings confirm this.

Another fusion algorithm that also uses the previous
track estimates (i.e., it has memory) is the IMF [13, 25].
When operating at full rate, the IMF is algebraically
equivalent to the CMF (see [6], Section 8.6) and also to
the algorithms for T2TFwM presented in this section.
However, at a lower rate, the IMF is not an optimal
algorithm. As reported in [10], this may even lead to
divergence. In contrast, the algorithms for T2TFwMnf,
T2TFwMpf and T2TFwMI{f are optimal at any rate.

3.5. Summary of the Various T2TF Configurations

To summarize the discussion in Section 2 and Sec-
tion 3:

e For T2TFwoM (which uses only the track estimates
at the fusion time), information feedback will cause a
degradation in fusion accuracy (see Section 2.4). This
is because the local trackers use locally optimal but
globally suboptimal filter gains, which leads to lower
gains for the new measurements in the fused track.
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TABLE V
Data Required from Local Tracker 2 for each Fusion with Fusion Interval of M

Data Required

The Total Amounts (bits)

Exact algorithm

WEk,D), Wy (k,i — 1), 2y, By

(M + Dn? +n_+05n, + Dn ln,,

Approximate

algorithm X, P,

Measurement time stamps,

Mnp +[n, +0.5@n, + Dn ln,

n,..: The number of the bits for each element in the state and covariance (accuracy)

n,: Dimension of the state

ny: The number of bits for each measurement time stamp

Information feedback will lower the gains further, and
cause more degradation in fusion accuracy.

e The algorithms for T2TFwM (which uses also the
track estimates from the previous fusion) at an ar-
bitrary rate for different information configurations
(with and without information feedback) are de-
rived for the first time. When operating at full
rate, T2TFwM, with no, partial or full information
feedback, is equivalent to the CMF (global opti-
mum). When operating at a reduced rate, T2TFwMnf,
T2TFwMpf and T2TFwMIf all have a small degrada-
tion in fusion accuracy compared to the CMF. How-
ever, unlike the case of T2TFwoM, the degradation
is smaller for T2TFwMIff than for T2TFwMpf and
T2TFwMnf. Namely information feedback improves
fusion accuracy in T2TFwM.

4. THE APPROXIMATE IMPLEMENTATION OF THE
T2TF ALGORITHMS

The T2TF algorithms at an arbitrary rate require the
local weight matrices (12)—(13) at the FC. However,
transmission of these matrices might not be affordable
in practical distributed tracking systems due to limit in
communication capacity. The idea of the approximate
implementation is to approximately reconstruct the local
information required by the T2TF algorithms at the FC
using a minimum amount of information from the local
trackers. Section 4.1 presents the approximate imple-
mentation which has significantly lower communication
requirements than the original algorithms. Simulation
results in Section 4.2 show that this implementation is
consistent and has practically no loss in the fusion ac-
curacy due to the approximation.

4.1. The Approximate Algorithm

Note that the local weighting matrices (12)—(13) are
functions of F(i — 1), H(i), K,(i), i =[+1,...,k. At the
FC, if estimates of the target positions (i.e., an approx-
imate trajectory of the target) are available, using also
the locations of the local sensors and the times when
the local measurements are taken, the observation ma-
trices used by the local tracker and the related track
updates can be approximately reconstructed, yielding
H (i), K, (i), i=1+1,...,k. Note that these reconstruc-
tions do not need the actual measurements due to the

nature of the Kalman filter that the covariance updates
do not depend on the actual measurements. Thus the
approximate evaluation of (12)—(13) is given by?
k—1—-1
Wetk,) = T U — Kk —H, k= DIF(k—i— 1)

i=0

(82)

k—i—1
x@an={[]qup&®ﬁw0jn}

J=0

[ = K()H, ()] (83)

where overbar denotes the approximate values. For
T2TF, (15) can be approximated by

Btk | k) = We e, P | DW (k. D)

k
+ 3" W ki — DQG — DWy (ki — 1)
i=l+1

(84)

Thus, to approximately calculate the local weights
(12)—(13) required in the T2TF algorithms, the FC
needs to know the following: (i) the locations of the
local sensors, (ii) the time when the local measurements
are obtained (considering the possibility of missed de-
tections in practical systems) and (iii) an approximate
trajectory of the target. Note that, at the FC, (iii) is avail-
able when there is a tracker running at the FC or it can
be obtained by interpolation between the track estimates
at the fusion times. Although extra computations are re-
quired at the FC to obtain the approximate weights at
the local trackers, these computations are affordable due
to the simplicity of the expressions involved. A brief
analysis of the savings in communication is given be-
low.

In distributed tracking systems with sensors at fixed
locations, there is no need to transmit the locations. As-
sume further that tracker 1 is collocated with the FC
and, thus, the approximate track trajectory can be ob-
tained from its track estimates. Table V compares the
amount of data that needs to be transmitted from lo-
cal tracker 2 to the FC in the exact algorithm and in

81f the measurements are linear (as in [18]) there is no need for this
approximation. In the problem considered later, the measurements are
nonlinear (range and azimuth); consequently, this approximation will
be needed.
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Fig. 4. Filter consistency test: NEES (T2TFwoMff).

the approximate implementation. Given that transmis-
sion of measurement time stamps is much less expen-
sive than transmission of the local weights, namely,
(M + D)n2n,,, > Mny, the savings in communication
using the approximate algorithm is significant.

4.2. Simulation Results

The approximate implementation of the T2TF al-
gorithms is tested in a 2-D multisensor tracking sce-
nario, in which one target is tracked by two trackers.
The target motion is modeled as a DWNA process [7]
with process noise variance g. The target state is defined
as x =[¢ § ¢ é]’ . Tracker 1 is located at [0 O] m and
tracker 2 is at [0 10000] m. The local sensors (radars)
obtain position measurements of the target in their polar
coordinates, namely, range and azimuth, every T =1 s.
The filter used by the trackers is the converted mea-
surement Kalman filter (CMKEF) [7]. It is assumed that
tracker 1 is collocated with the FC, i.e., the FC has ac-
cess to the estimates of tracker 1, and tracker 2 sends
its track (x,(k | k), P,(k | k)) to the FC every 10 sampling
intervals. The simulation results are obtained from 100
Monte-Carlo (MC) runs.

4.2.1. T2TFwoM with full Information Feedback
(T2TFwoM(f)

Figs. 4-5 show the performance of the approxi-
mate implementation in the case of T2TFwoMIff. As
shown in Fig. 4, the fused tracks are always consis-
tent (the normalized estimation error squared (NEES))
are in their 95% probability region [3.46 4.69]). In
Fig. 5, significant improvement in track accuracies
from both trackers is observed at the fusion times
k =10,20,...,100. The results of the CMF are also
presented as the bound of the tracking performance.
The root mean square (RMS) position errors indicate
that the fused track practically meets the performance
bound of the CMF at the fusion times. Between the
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Fig. 5. RMS position errors (T2TFwoMff).

fusion times the errors increase because each tracker
is on its own. The loss of accuracy because of the
information feedback in the fused track (discussed in
Section 2.3) becomes insignificant due to the geomet-
ric diversity of the two tracks.” The results for veloc-
ity are similar. Since the approximate implementation
performs practically as well as the CMF, there is no
need in this case to evaluate the exact algorithm for
T2TFwoMTff.

T2TFwoM with Partial Information Feedback
(T2TFwoMpf)

Figs. 6-7 show the performance of the approximate
implementation in the case of T2TFwoMpf for the
same tracking scenario with the following modification:
tracker 2 does not receive the fused track from the FC.
Fig. 6 shows that the fused track is consistent. In terms
of achieved accuracy, it also meets the performance
bound of the CMF at the fusion points.

4.2.2.

4.2.3. The Effect of Ignoring the Crosscovariance in
T2TFwoM(ff

Figs. 8-9 show the statistics from the same track-
ing scenario, but the T2TFwoMff is performed assum-
ing that the two tracks are uncorrelated. The diver-
gence of the filter—very rapid in NEES, slower but
noticeable in RMSE—demonstrates the importance of
taking into account the crosscovariances. This hap-
pens because the excessive optimism (fused covariances
that are too small) due to ignoring the crosscovari-
ances.

9With the two sensors widely separated (10000 m apart in the simula-
tion), and the measurements much more accurate in the range direction
than the crossrange direction, the two tracks are geometrically com-
plementary to each other in the scenario considered. In such cases,
the improvements of accuracy of the fused track are very significant,
and they are less affected by the crosscorrelation between the tracks.
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5. SLIDING WINDOW TEST FOR T2TA

The chi-square based track-to-track association
(T2TA) test is investigated in this section. Note that the
chi-square based T2TA test is based only on the likeli-
hood function (LF) under H,, (the two tracks belong to
the same target). The optimal (likelihood ratio—LR) test
can not be used for T2TA, since the exact LF under H,;
(the two tracks do not belong to the same target) is not
available. Although a diffuse prior may be used to calcu-
late the LF under H,, which leads to a LR test that is the
same as the chi-square based test. The test still has vir-
tually no information about H,.!” The test can be done
based on a single frame of track estimates, or using track
estimates at multiple times. Conventional belief is that,
given the same false alarm rate, using multiple frames
of data will yield higher power. Accordingly the sliding
window test is proposed in Section 5.1, which is shown

10Als0 note that the chi-square based test uses only the Gaussian
exponent (This has the disadvantage that large covariance leads to
acceptance but it has low power). The assignment, however, will use
the full LF, i.e., there is penalty for large covariance matrix.
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Fig. 9. RMS position errors (T2TFwoMIff).

to yield false alarm rates that match the theoretical val-
ues. Then we compare the power of the sliding window
test to that of the single time test. Counterintuitively,
it is observed that the sliding window test, which uses
more data, does not necessarily have more power than
the single time test. The reason for this phenomenon is
discussed in Section 5.2.

5.1. The Algorithm of the Sliding Window Test for
T2TA

Consider the basic T2TA test of whether two tracks
originated from the same target. For the single time test
at time k, the data includes the tracks x,(k | k), P,(k | k)
from tracker 1 and X,(k | k), P,(k | k) from tracker 2, as
well as their crosscovariance P,(k | k). Define

A(k) = &y (k | k) = Ry (k | K).
It follows that
Py(k) = P (k | k) + Py(k | k) — Py (k | k) — Pry(k | K)'
(86)

(85)
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where P, (k | k) is calculated from (15). The test statistic
is

T(k) = A(k) Py (k)™ A(k) (87)

which, under H, (the two tracks are for the same target),
is a random variable with a 7 distribution (n, is the
dimension of the state). However, for data association at
subsequent times, similar test statistics 7(g), g > k, are
correlated with T'(k), thus the sum of single time test
statistics (87) within a time window does not have a y?
distribution [4, 24].11

The sliding window test based on the most recent N
frames of data needs to account for the crosscovariances
among data at different times. Without loss of general-
ity, consider the T2TA that occurs at time ¢,,. Define

Ay@,) =[AR,) AR, )...Al, v, (88)

where subscript N is the window length and A(z,,), ...,
A(t,,_n41) are from the N most recent track estimates
received by the FC. The test statistic 7y(z,) for this
sliding window of N times is

Ty(t,) = Ay(t,) Cov[Ay )] 'AN@,)  (89)

which, under Hy, has a x? distribution with Nn, degrees
of freedom.

Given Cov[A(t,,_;)] from the previous sliding win-
dow, to obtain Cov[A(t,)], the new diagonal term

Cov[A(z,)] = PA(2,,) (90)
is calculated from (86). The new off-diagonal terms are
Cov[A(t,), A(t)]
= Covlx, @@, |1,) = %,(1, [ £,).X,(t; [ 1) = X, | 1)]
= Cov[x,(, |1,).X%, | t)] + Cov[x,(z, | 1,).%,(t; | 1,)]
—Cov[x,(t, | t,).%,(, | 1)] — Cov[x,(t, | 1,),%,( | )],
i=m—N+1,....m—1. (91

From (11), it follows that

Cov[A,), Alt)] = W'

w DR 8) + W2, 1B | 1)
- Wel (o 1)P (| 4)— u/;z(tm’ti)PQl(ti |%)
(92)
where P,(t; | 1,), B(t; | t;) are from the tracks at time
and P,,(t; | t;) is calculated using (15).

5.2. The Sliding Window Test vs. the Single Time Test

The sliding window test using test statistics (89) and
the single time test with test statistics (87) are compared
in a 1-D multisensor tracking scenario as in Section 2.3.
Target 1 starts at 5000 m with an initial velocity —3 m/s.
Target 2 starts at 5030 m with the same initial velocity

HThis is contrary to the assertion in [16].

Sum of single time test statistics

= o (ignoring correlations in time)
F 0J3f - — Single time tests (exact)
2 « - Sliding window test with length 5 (exact)
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g
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o ’ associated with track 1 at sensor 2
2 o0
i<
o000 o
2015 o o o0
& 0_00 0_0O
= L= T « o
= [ ) o
= 00 x X
0.1} @ x x X X X x
2 ® x x x X
3 x -l X % x
= ? x
S 0.05¢ N " " B i ]
o L PR T )
- W — - W e - #* - W
AT * . *
0 i PR L L. 1 L .
15 30 45 60 75
Time (s)

Fig. 10. Miss probability (wrong rejection) from 100 MC runs for
0.025 theoretical value (associations are done every 3 s).

(the initial target separation is 30 m).'? Both targets
have process noises with variance g = 2-1072 m?/s*.
These noises are independent across the targets, leading
to their eventual separation. Two sensors, designated
as 1 and 2, obtain position measurements of targets 1
and 2 every 1 s and maintain separate tracks for the
targets. The T2TA tests are performed every 3 s, which
is the time interval between two consecutive local track
estimates used in the window test. The sliding window
test uses a window of N =5 times. For comparison,
two tests based on the sum of the single time tests are
also performed. One is the cumulative sum over all the
previous single time tests; another is the sum of the
single time tests within a sliding window of N as the
approach proposed in [16, 24]. Both are not optimal
because the correlations in time are ignored.

Fig. 10 shows the miss probability when the track
of target 1 at sensor 1 is associated with the track of the
same target at sensor 2. The theoretical miss probability
is 2.5% (correct acceptance 97.5%). The “single time
test” (based on single frame of data) and the “sliding
window test” match the theoretical error probability.
However, the miss probabilities of the other two tests
based on the sum of the single time test statistics are
significantly larger than the theoretical value. This is
due to the fact that these tests ignore the correlation
among the single time test statistics.

Fig. 11 shows the probability of correct rejection
(power of the test) for 0.025 miss probability when
the track of target 1 at sensor 1 is associated with the
track of target 2 at sensor 2. Surprisingly, the sliding
window test has lower power than the single time test.
This counterintuitive phenomenon is further analyzed in
the Section 5.3 with an illustrative example.

12This small separation is only for the purpose of comparing the
power of different tests for T2T association. It is assumed that these
closely spaced targets are resolved by the sensors.
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Fig. 11. Power of test for 0.025 miss probability from 100 MC

runs.
5.3. The Effect of Window Length on the Power of
the T2TA Test

Consider a scalar state estimation problem with two
sensors/estimators. Estimator 1 has prior information
x,(0) ~ N(x,(0),P,), where x,(0) denotes the true state
of the target corresponding to track 1 at time 0, P
is the variance of the estimate X,(0). At time I, this
true state propagates to x;(1) =x;(0) +v where v~
N(0,0Q). A measurement is taken at time 1 as z;(1) =
x,(1) +w;, where w, ~ N(O,R,). Estimator 2 has prior
information on the target corresponding to track 2,
X,(0) ~ N(x,(0),B). At time 1, the state of this target
evolves as x,(1) =x,(0) +v and the measurement of
sensor 2 is z,(1) = x,(1) + w,, where w, ~ N(O,R,). It is
assumed that the states of the two targets have the same
process noise v, so the difference between their true
states stays constant (they are moving in formation).!3
When the two targets are the same, x,(t) — x,(t) =0, t =
0,1, otherwise the target separation is |x,(t) — x,(?)| =
d>0, t=0,1. It is assumed that the errors in the
prior information and the measurement noises are all
independent and for the sake of simplicity P, = B, =
R, =R, = o2

For the T2TA test based on the prior information at
time O, one has

A(0) = X,(0) — x,(0) (93)
Var[A(0)] = P, + B, = 207 (94)
T(0) = Var[A(0)] ' A(0)* = A(O)2 (95)

under H,, (the two tracks are from the same target),
E[A(0)] = 0; under H, (the two tracks are from two
different targets), E[A(0)] =

At time 1, with the measurements z; and z,, the
updated estimates for the target (under H;) or targets

13 As later discussed, this assumption is necessary to obtain the actual
theoretical performance of the test.

(under H,) are

. R, P+0
MO O Bag R
2
=3,7500O 2UU2J;QQ11 (96)
A R, B+0
PO Er R MO B
o o? +Q
02+Q2() 22+ 0°2 7
Thus
A1) = (1)~ (1)
2 2
= 5RO B O+ 7 )
(98)
Var[A(1)] = ot 7 (P+P)+ (o + Q) T TE) (R +R,)
Q2+ 1T T R T
B 20%02 +4Q0* + 40°
B (202 + Q)2 ©9)
T(1) = Var[A(1)] ' A(1)?
_ (202 + Q) )
" 20202 +4Q0* + 406 A (100)
under Hy, E[A(1)] =0 and under H,, E[A(1)] =
For the window test,
A1) =[AW0) AT (101)
204
202 0
202+ Q
Cov[A,(1)] =
OVLAD] 20 2022 +400" + 40"
202+ Q (202 + Q)?
(102)
T,(1) = A,(1Y{Cov[A,(DI} ' Ay (1)  (103)

with E[A,(1) |Hy] = [0 0] and E[A,(1) |H,1=[d 4T

Since the single time test is a special case of the
window test with a window length of 1, T(0) can also
be denoted as 7;(0) and 7(1) as 7;(1). The tests statistics
T(0), T(1) and T,(1), which are quadratic forms, have
non-central Chi-square distributions with N degrees
of freedom and noncentrality parameter A [14]. The
number of the degrees of freedom of the test statistic
is the window length N and the noncentrality parameter
A is given by

Av(®) = E[A (O] {Cov[Ay ()]} ' E[AN ()],

t=0,1 (104)
with the expectation taken conditioned on H, (“same
target,” i.e., d = 0) or H, (d > 0). Specifically,

Ty(@®) ~ (N Ay (@), 1=0,1. (105)
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TABLE VI
Statistical Properties of the Test Statistics: Single Time Test vs.
Sliding Window Test

Noncentrality parameter \

Test statistic Degrees of
~x3(N,\) Freedom N H, H,
7(0) = T;(0) 1 0 L p
202
T(1) =T;(1) 1 0 (2o% +Q)? )
20202 + 4Qac* + 4o
L
(1) 2 0 —d

Notice that (105) holds only when the covariance matri-
ces of Ay () are the same under both H, and H,, which
requires the targets to have the same process noise. This
happens when the targets move in formation. However,
in general, different targets do not necessarily have the
same process noise. In such cases, the test statistic 7y (f)
does not follow a non-central y? distribution under H,;
and the difference between the true states of the targets
is nonstationary. Thus the power of the test can not be
obtained theoretically.

The cumulative distribution function (cdf) of a
x*(N, ) random variable is given by [28]

2 N/2Y (G +k/2,x/2)
TGk
(106)

Softwares are available for the calculation of (106).

The statistical properties of the above test statistics
under H, and H, are shown in Table VI. Notice that, in
this example, the noncentrality parameter of the window
test 7,(1) doesn’t depend on the value of the process
noise variance Q. This holds for this specific example
but is not true in general. However, it is easy to show
that the noncentrality parameter of the sliding window
test is always greater than or equal to that of the single
time test.

Assuming o> = 1, Fig. 12 compares the noncentral-
ity parameters for the window test (N = 2) and the sin-
gle time test at time 1. It can be seen that, if Q =0,

PIC(N N <xp=) eV
j=0

- - ?\.2[1} for 2 point window test

— .?\.1[1) for the single time test | |

0.5
0

5 10 15
Q

20

Fig. 12. The noncentrality parameters (normalized by the
separation squared) vs. process noise variance.

then the noncentrality parameters of 7,(1) and T'(1) are
the same. However, 7,(1) has 1 more degree of free-
dom than 7'(1), thus the sliding window test 7,(1) re-
quires a higher threshold for the same miss probability
of H, and, consequently, is less powerful than the
single time test T(1). As the variance of the process
noise Q increases, the noncentrality parameter of 7,(1)
remains constant, and will be significantly larger than
the noncentrality parameter of 7'(1), which decreases
with Q, as shown in Fig. 12. This compensates for the
larger number of degrees of freedom of 7,(1) and makes
1,(1) eventually more powerful than 7'(1).

Table VII compares the power of the tests under
different process noise variances Q when d =3 and
02 = 1. The “Threshold for rejection” and “Power of the
test” are from the theoretical calculations. The “Miss
probability” and “Correct rejection” are from Monte
Carlo simulations and they match the theoretical values.
The results show that when the process noise level is
high (Q = 6), the window test has higher power than the
single time test; however, counterintuitively, the window
test has lower power than the single time test when the
process noise level is low (Q = 0.1).

Note that the power of the test depends on (i) the
number of degrees of freedom N of the chi-square

TABLE VII
Performance of the Tests (d = 3, 0> = 1 and Probability of Correct Acceptance 1 — o = 0.975). Q is the Process Noise Variance; N is the
Degrees of Freedom of the Test Statistic and ) is the Noncentrality Parameter. The Miss Probability and Correct Rejection (power) are
Obtained form 1000 Monte Carlo (MC) Runs.

Test | Q@ | N A Threshold (rejection Theoretical MC Miss MC Correct

Stat under Hy of Hp, oo = 0.025) power of the test | Prob of Hy | Rejection of Hy

T(1) | 0.1 8.08 5.02 [0.775] 0.026 0.76

To(1) 2 9 7.38 | 0.678 0.030 0.69

T 6 1 5.76 5.02 0.56 0.031 0.57
-T-_.{lJ ' (2] . 9 7.38 m 0.029 0.66
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test statistic (which determines the threshold) and (ii)
the noncentrality parameter A. Two explanations from
different perspectives to this seemingly counterintuitive
phenomenon are given next.

1. In this example, the power of the window test 7,(1)
remains the same over different process noise levels
Q as a result of the constant noncentrality parameter,
i.e., the window test is not sensitive to process noise
levels. When the process noise level is low (Q = 0.1
in this example) the power of the single time test is
higher than the window test’s because it has almost
the same noncentrality parameter as the window test
but only one degree of freedom (i.e., lower thresh-
old). However, with a high level of process noise
(when Q = 6) the noncentrality parameter decreases
and the power of the single time test drops below
that of the window test.

2. Attime 1, by incorporating the data from time O, the
window test has a noncentrality parameter larger than
that of the single time test (for both cases when Q =
0.1 and Q = 6). However, the inclusion of the data
from time O also increases the degrees of freedom of
the test statistic (from 1 to 2), which has a negative
impact on the power of the test (for the same false
alarm rate, this raises the threshold to 7.38 from 5.02
for the single time test). When the crosscorrelation
between the data at time 1 and time 0 is large
(which happens for low process noise Q = 0.1), the
increase in the noncentrality parameter is too small to
overcome the negative effect of the increased degree
of freedom. In such cases, the window test has lower
power than the single time test.

The discussion above indicates that the advantage of
the window is negated by the crosscorrelation in time,
which is higher for low process noise.!* This suggests
that, to enhance the power of the sliding window test,
it is necessary to make sure that the multiple frames of
data selected for the test are not strongly correlated. This
can be accomplished by increasing the time difference
between the selected frames.

To confirm this guideline, Fig. 13 shows the power
of the tests under a theoretical false alarm rate of o =
0.025 in the same simulation scenario as in Section 5.2
except that the tests for T2TA are done every 15 s (e.g.,
the time interval of two consecutive track estimates used
in the window test) as opposed to 3 s and the length of
the sliding window is set to 4. It is shown that, in this
case, the sliding window test has more power than the
single time test.

The phenomenon that using more data may lead to
lower power in the classical chi-square test seems coun-
terintuitive. However, it can be better understood given
the fact that the test uses only the likelihood function
(LF) under H, and the LF under H, is unknown. Thus

14This is because with lower process noise the “memory” of the filter
is “longer.”
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Fig. 13. Power of the test: sliding window test vs. single frame test

with a increased testing interval of 15 s.

it is unclear how the available data should be combined
to better differentiate the two hypothesis. The loss in
power of the chi-square based window T2TA test is the
result of the lack of information under H,. A likelihood
ratio (LR) test would be more powerful but it requires
knowledge of the target separation, i.e., it is not practi-
cal.

6. CONCLUSIONS

In this paper the optimal T2TF algorithms at an arbi-
trary rate are investigated for various information con-
figurations. First algorithms for T2TF without memory
(T2TFwoM: fuser uses only the local track estimates
at the fusion time) are presented for three informa-
tion configurations, namely, T2TFwoM with no, par-
tial and full information feedback. It is shown that, for
T2TFwoM, information feedback is detrimental to fu-
sion accuracy. Then algorithms for T2TF with memory
(T2TFwM: fuser uses also the fused and local track es-
timates from the previous fusion) at an arbitrary rate are
derived for information configurations with no, partial
and full information feedback. It is shown that, at full
rate, T2TFwM, with or without information feedback, is
equivalent to the centralized measurement fusion (CMF,
which is the global optimum). However, when operating
at a lower rate, a certain amount of loss in fusion accu-
racy (compared to the CMF) is unavoidable. In contrast
to the case of T2TFwoM, it is shown that information
feedback improves the fusion accuracy of T2TFwM.
And, unlike the information matrix fusion (IMF) which
is optimal (same as CMF) only at full rate, the algo-
rithms for T2TFwM are optimal at any rate.

An approximate implementation of the T2TF algo-
rithms is also proposed based on the reconstruction of
local information at the fusion center (FC). For non-
linear distributed tracking systems, it has much lower
communication requirements and practically no loss in
fusion accuracy due to the approximation. Simulation
results show that it is consistent and, for the sensors-
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target geometry considered, it meets the performance
bound of the centralized measurement fusion at the fu-
sion points.

The hypothesis test for T2TA is also studied in this
paper. The sliding window test for T2TA is presented.
It uses track estimates in a time window and yields false
alarm rates that match the theoretical values. The sliding
window test was compared with the single time test
and the results show that, counterintuitively, the sliding
window test may have lower power than the single time
test. This is because using more data also increases the
degrees of freedom of the test statistics which has a
negative impact on the power of the test. When the
multiple frames of data selected for T2TA are strongly
correlated, which happens for motion with low process
noise, the increase in the noncentrality parameter is too
small to overcome the negative effect of the increased
degree of freedom. In such cases, the sliding window
test may be counterproductive and has lower power
than the single time test. In practice, this should be
avoided by, e.g., increasing the time difference between
the selected data frames.
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